Friday 22 September 2017

Unterschied Zwischen Bewegend Durchschnittlich Und Autoregressiv


Es gibt eine Reihe von Ansätzen zur Modellierung von Zeitreihen. Wir skizzieren einige der häufigsten Ansätze unten. Trend, saisonale, restliche Zerlegungen Ein Ansatz besteht darin, die Zeitreihe in eine Trend-, Saison - und Restkomponente zu zerlegen. Eine dreifache exponentielle Glättung ist ein Beispiel für diesen Ansatz. Ein anderes Beispiel, genannt saisonale Löss, basiert auf lokal gewichteten kleinsten Quadraten und wird von Cleveland (1993) diskutiert. Wir sprechen nicht über jahreszeitlichen Löss in diesem Handbuch. Häufigkeit basierte Methoden Ein weiterer Ansatz, der üblicherweise in wissenschaftlichen und technischen Anwendungen verwendet wird, besteht darin, die Serie im Frequenzbereich zu analysieren. Ein Beispiel für diesen Ansatz bei der Modellierung eines sinusförmigen Typs Datensatz ist in der Strahlablenkung Fallstudie gezeigt. Die spektrale Darstellung ist das primäre Werkzeug für die Frequenzanalyse von Zeitreihen. Autoregressive (AR) - Modelle Ein gemeinsamer Ansatz zur Modellierung univariater Zeitreihen ist das autoregressive (AR) Modell: Xt delta phi1 X phi2 X cdots phip X At, wobei (Xt) die Zeitreihe ist (At) ist weißes Rauschen und Delta Links (1 - sum p phii rechts) mu. Mit (mu) den Prozessmittel bedeuten. Ein autoregressives Modell ist einfach eine lineare Regression des aktuellen Wertes der Serie gegen einen oder mehrere vorherige Werte der Serie. Der Wert von (p) heißt die Reihenfolge des AR-Modells. AR-Modelle können mit einer von verschiedenen Methoden analysiert werden, einschließlich standardmäßiger linearer Quadrate-Techniken. Sie haben auch eine einfache Interpretation. Moving Average (MA) Modelle Ein weiterer gemeinsamer Ansatz zur Modellierung univariater Zeitreihenmodelle ist das gleitende Mittelwert (MA) Modell: Xt mu At - theta1 A - theta2 A - cdots - thetaq A, wobei (Xt) die Zeitreihe ist (mu ) Ist der Mittelwert der Reihe, (A) sind weiße Rauschbegriffe, und (theta1, ldots, thetaq) sind die Parameter des Modells. Der Wert von (q) heißt die Reihenfolge des MA-Modells. Das heißt, ein gleitender Durchschnittsmodell ist konzeptionell eine lineare Regression des aktuellen Wertes der Reihe gegen das weiße Rauschen oder zufällige Schocks eines oder mehrerer vorheriger Werte der Reihe. Die zufälligen Schocks an jedem Punkt werden von der gleichen Verteilung, typischerweise einer Normalverteilung, mit der Position bei Null und konstantem Maßstab angenommen. Die Unterscheidung in diesem Modell ist, dass diese zufälligen Schocks zu zukünftigen Werten der Zeitreihen übertragen werden. Die Anpassung der MA-Schätzungen ist komplizierter als bei AR-Modellen, da die Fehlerterme nicht beobachtbar sind. Dies bedeutet, dass iterative nichtlineare Anpassungsverfahren anstelle von linearen kleinsten Quadraten verwendet werden müssen. MA-Modelle haben auch eine weniger offensichtliche Interpretation als AR-Modelle. Manchmal wird das ACF und PACF darauf hindeuten, dass ein MA-Modell eine bessere Modellwahl wäre und manchmal auch AR - und MA-Begriffe im selben Modell verwendet werden sollten (siehe Abschnitt 6.4.4.5). Beachten Sie jedoch, dass die Fehlertermine nach dem Modell unabhängig sind und den Standardannahmen für einen univariaten Prozess folgen. Box und Jenkins popularisierten einen Ansatz, der den gleitenden Durchschnitt und die autoregressiven Ansätze in dem Buch Time Series Analysis: Prognose und Kontrolle (Box, Jenkins und Reinsel, 1994) kombiniert. Obwohl sowohl autoregressive als auch gleitende durchschnittliche Ansätze bereits bekannt waren (und ursprünglich von Yule untersucht wurden), war der Beitrag von Box und Jenkins in der Entwicklung einer systematischen Methodik zur Identifizierung und Schätzung von Modellen, die beide Ansätze beinhalten könnten. Das macht Box-Jenkins Modelle zu einer leistungsstarken Klasse von Modellen. Die nächsten paar Abschnitte werden diese Modelle im Detail besprechen. Was sind Relation und Differenz zwischen Zeitreihen und Regression Für Modelle und Annahmen. Ist es richtig, dass die Regressionsmodelle die Unabhängigkeit zwischen den Ausgangsvariablen für verschiedene Werte der Eingangsvariablen übernehmen, während das Zeitreihenmodell nicht ist. Was sind einige andere Unterschiede Es gibt eine Reihe von Ansätzen zur Zeitreihenanalyse, aber die beiden bekanntsten sind die Regressionsmethode und die Box-Jenkins (1976) oder ARIMA (AutoRegressive Integrated Moving Average) Methode. Dieses Dokument stellt die Regressionsmethode vor. Ich halte die Regressionsmethode weit überlegen ARIMA aus drei Hauptgründen Ich verstehe nicht ganz, was die Regressionsmethode für Zeitreihen auf der Website ist und wie es sich von der Box-Jenkins oder ARIMA-Methode unterscheidet. Ich schätze, wenn jemand etwas Einblicke auf diese Fragen geben kann. Danke und Grüße Ich denke wirklich, das ist eine gute Frage und verdient eine Antwort. Der Link zur Verfügung gestellt wird von einem Psychologen, der behauptet, dass einige Home-Brew-Methode ist ein besserer Weg, um Zeitreihen-Analyse als Box-Jenkins. Ich hoffe, dass mein Versuch auf eine Antwort andere ermutigen wird, die mehr über Zeitreihen kenntnisreich sind, um dazu beizutragen. Von seiner Einleitung aus sieht es aus, als würde Darlington den Ansatz der Anpassung eines AR-Modells durch kleinste Quadrate verteidigen. Das heißt, wenn du das Modell zt alpha1 z cdots alphak z varepsilont an die Zeitreihe zt passen möchtest, kannst du einfach die Serie zt auf der Serie mit lag 1, lag 2, und so weiter bis hin zu k, mit einem Gewöhnliche Mehrfachregression. Dies ist sicher in R erlaubt, es ist sogar eine Option in der ar-Funktion. Ich habe es getestet, und es neigt dazu, ähnliche Antworten auf die Standardmethode für die Anpassung eines AR-Modells in R zu geben. Er befürwortet auch das Regressing zt auf Sachen wie t oder Kräfte von t, um Trends zu finden. Auch hier ist das ganz in Ordnung. Viele Zeitreihenbücher diskutieren dies, zum Beispiel Shumway-Stoffer und Cowpertwait-Metcalfe. Typischerweise könnte eine Zeitreihenanalyse entlang der folgenden Zeilen verlaufen: Sie finden einen Trend, entfernen ihn und passen dann ein Modell an die Residuen. Aber es scheint, als ob er sich auch für eine Überfüllung einsetzt und dann die Verringerung des Mittelquadratfehlers zwischen den eingeführten Serien und den Daten als Beweis dafür, dass seine Methode besser ist, Zum Beispiel: Ich fühle, dass Korrelogramme jetzt veraltet sind. Ihr Hauptzweck war es, den Arbeitern zu erlauben, zu erraten, welche Modelle die Daten am besten passen werden, aber die Geschwindigkeit der modernen Computer (zumindest in der Regression, wenn nicht in der Zeitreihenmodell-Anpassung) erlaubt einem Arbeiter, einfach mehrere Modelle zu passen und genau zu sehen, wie Jeder passt so, wie es durch einen mittleren quadratischen Fehler gemessen wird. Die Frage der Kapitalisierung auf den Zufall ist für diese Wahl nicht relevant, da die beiden Methoden gleichermaßen anfällig für dieses Problem sind. Das ist keine gute Idee, denn der Test eines Modells soll sein, wie gut es prognostizieren kann, nicht wie gut es zu den vorhandenen Daten passt. In seinen drei Beispielen verwendet er angepasstes Wurzel-Mittelquadrat-Fehler als Kriterium für die Qualität der Passform. Natürlich, über-passend ein Modell wird eine in-Probe Schätzung der Fehler kleiner machen, so seine Behauptung, dass seine Modelle sind besser, weil sie kleinere RMSE ist falsch. In kurzer Zeit, da er das falsche Kriterium für die Beurteilung, wie gut ein Modell ist, verwendet, erreicht er die falschen Schlussfolgerungen über Regression gegen ARIMA. Id wette das, wenn er die prädiktive Fähigkeit der Modelle stattdessen getestet hätte, wäre ARIMA an die Spitze gekommen. Vielleicht kann man es versuchen, wenn sie Zugang zu den Büchern haben, die er hier erwähnt. Ergänzend: Für mehr über die Regressionsidee, möchten Sie vielleicht auschecken ältere Zeitreihen Bücher, die geschrieben wurden, bevor ARIMA wurde die beliebteste. Zum Beispiel, Kendall, Time-Series. 1973, Kapitel 11 hat ein ganzes Kapitel über diese Methode und Vergleiche mit ARIMA. Soweit ich kann sagen, der Autor nie beschrieben seine Home-Brew-Methode in einer Peer-Review-Publikation und Verweise auf und aus der statistischen Literatur erscheinen minimal und seine wichtigsten Publikationen zu methodischen Themen stammen aus den 70er Jahren. Streng genommen, keines davon beweist alles andere als ohne genügend Zeit oder Sachkenntnis, um die Ansprüche selbst zu beurteilen, würde ich sehr zögern, irgendwelche davon zu benutzen. Ndash Gala Jul 18 13 bei 11: 31Einführung in ARIMA: Nichtseasonale Modelle ARIMA (p, d, q) Prognose Gleichung: ARIMA Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Vorhersage einer Zeitreihe, die zu 8220stationary8221 gemacht werden kann Durch Differenzierung (ggf.), vielleicht in Verbindung mit nichtlinearen Transformationen wie Protokollierung oder Entleerung (falls nötig). Eine zufällige Variable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Serie hat keinen Trend, ihre Variationen um ihre Mittel haben eine konstante Amplitude, und es wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen zufälligen Zeitmuster sehen immer in einem statistischen Sinn gleich aus. Die letztere Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder äquivalent, daß sein Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieses Formulars kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn man offensichtlich ist) könnte ein Muster der schnellen oder langsamen mittleren Reversion oder sinusförmigen Oszillation oder eines schnellen Wechsels im Zeichen sein , Und es könnte auch eine saisonale Komponente haben. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Prognosegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. regressionstypische) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und Verzögerungen der Prognosefehler bestehen. Das heißt: vorhergesagter Wert von Y eine Konstante undeiner gewichteten Summe von einem oder mehreren neueren Werten von Y und einer gewichteten Summe von einem oder mehreren neueren Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, ist es ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit Standardregressionssoftware ausgestattet werden kann. Zum Beispiel ist ein autoregressives (8220AR (1) 8221) Modell erster Ordnung für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur Y um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt hinterlässt). Wenn einige der Prädiktoren die Fehler der Fehler sind, ist es ein ARIMA-Modell, es ist kein lineares Regressionsmodell, denn es gibt keine Möglichkeit, 828last period8217s error8221 als unabhängige Variable anzugeben: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem bei der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen des Modells8217 nicht lineare Funktionen der Koeffizienten sind. Obwohl sie lineare Funktionen der vergangenen Daten sind. So müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) geschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationärisierten Serien in der Prognosegleichung werden als quartalspezifische Begriffe bezeichnet, die Verzögerungen der Prognosefehler werden als quadratische Begrenzungsterme bezeichnet, und eine Zeitreihe, die differenziert werden muss, um stationär zu sein, wird als eine quotintegrierte Quotversion einer stationären Serie bezeichnet. Random-Walk - und Random-Trend-Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA-Modellen. Ein Nicht-Seasonal-ARIMA-Modell wird als ein Quoten-Modell von quaremA (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nichtseasondifferenzen und q die Anzahl der verzögerten Prognosefehler in Die Vorhersagegleichung. Die Prognosegleichung wird wie folgt aufgebaut. Zuerst bezeichne y die d-te Differenz von Y. Das bedeutet: Beachten Sie, dass die zweite Differenz von Y (der Fall d2) nicht der Unterschied von 2 Perioden ist. Vielmehr ist es der erste Unterschied zwischen dem ersten Unterschied. Welches das diskrete Analog einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe und nicht deren lokaler Trend. In Bezug auf y. Die allgemeine Prognosegleichung lautet: Hier werden die gleitenden Durchschnittsparameter (9528217s) so definiert, dass ihre Zeichen in der Gleichung nach der von Box und Jenkins eingeführten Konventionen negativ sind. Einige Autoren und Software (einschließlich der R-Programmiersprache) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt sind, gibt es keine Mehrdeutigkeit, aber it8217s wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden die Parameter dort mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnen Sie mit der Bestimmung der Reihenfolge der Differenzierung (D) die Serie zu stationieren und die Brutto-Merkmale der Saisonalität zu entfernen, vielleicht in Verbindung mit einer abweichungsstabilisierenden Transformation wie Protokollierung oder Entleerung. Wenn Sie an dieser Stelle anhalten und vorhersagen, dass die differenzierte Serie konstant ist, haben Sie nur einen zufälligen Spaziergang oder ein zufälliges Trendmodell ausgestattet. Allerdings können die stationärisierten Serien immer noch autokorrelierte Fehler aufweisen, was darauf hindeutet, dass in der Prognosegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einigen einigen MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die am besten für eine gegebene Zeitreihe sind, wird in späteren Abschnitten der Noten (deren Links oben auf dieser Seite), aber eine Vorschau auf einige der Typen diskutiert werden Von nicht-seasonalen ARIMA-Modellen, die häufig angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann man sie vielleicht als Vielfaches ihres eigenen vorherigen Wertes und einer Konstante voraussagen. Die prognostizierte Gleichung in diesem Fall ist 8230which ist Y regressed auf sich selbst verzögerte um einen Zeitraum. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann wäre der konstante Term nicht enthalten. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell das Mittelwiederkehrungsverhalten, bei dem der nächste Periode8217s-Wert 981 mal als vorher vorausgesagt werden sollte Weit weg von dem Mittelwert als dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelrückkehrverhalten mit einem Wechsel von Zeichen, d. h. es sagt auch, daß Y unterhalb der mittleren nächsten Periode liegt, wenn es über dem Mittelwert dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)) wäre auch ein Y-t-2-Term auf der rechten Seite und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten könnte ein ARIMA (2,0,0) Modell ein System beschreiben, dessen mittlere Reversion in einer sinusförmig oszillierenden Weise stattfindet, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Spaziergang: Wenn die Serie Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Spaziergangmodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem das autoregressive Koeffizient ist gleich 1, dh eine Serie mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann wie folgt geschrieben werden: wobei der konstante Term die mittlere Periodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein Nicht-Intercept-Regressionsmodell eingebaut werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es (nur) eine nicht-seasonale Differenz und einen konstanten Term enthält, wird es als ein quotARIMA (0,1,0) Modell mit constant. quot eingestuft. Das random-walk-without - drift-Modell wäre ein ARIMA (0,1, 0) Modell ohne Konstante ARIMA (1,1,0) differenzierte Autoregressive Modell erster Ordnung: Wenn die Fehler eines zufälligen Walk-Modells autokorreliert werden, kann das Problem eventuell durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung behoben werden - - ie Durch den Rücktritt der ersten Differenz von Y auf sich selbst um eine Periode verzögert. Dies würde die folgende Vorhersagegleichung ergeben: die umgewandelt werden kann Dies ist ein autoregressives Modell erster Ordnung mit einer Reihenfolge von Nicht-Seasonal-Differenzen und einem konstanten Term - d. h. Ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) ohne konstante, einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem zufälligen Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Erinnern Sie sich, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschvolle Schwankungen um ein langsam variierendes Mittel aufweisen), das zufällige Wandermodell nicht so gut wie ein gleitender Durchschnitt von vergangenen Werten ausführt. Mit anderen Worten, anstatt die jüngste Beobachtung als die Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt von vergangenen Werten, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl von mathematisch äquivalenten Formen geschrieben werden. Eine davon ist die so genannte 8220error Korrektur8221 Form, in der die vorherige Prognose in Richtung des Fehlers eingestellt wird, die es gemacht hat: Weil e t-1 Y t-1 - 374 t-1 per Definition, kann dies wie folgt umgeschrieben werden : Das ist eine ARIMA (0,1,1) - ohne Konstante Prognose Gleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung passen können, indem Sie es als ARIMA (0,1,1) Modell ohne Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Erinnern daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Perioden-Prognosen 1 945 beträgt. Dies bedeutet, dass sie dazu neigen, hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückzukehren. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA (0,1,1) - without-constant-Modells 1 (1 - 952 1) beträgt. So, zum Beispiel, wenn 952 1 0.8, ist das Durchschnittsalter 5. Wenn 952 1 sich nähert, wird das ARIMA (0,1,1) - without-konstantes Modell zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Nähert sich 0 wird es zu einem zufälligen Walk-ohne-Drift-Modell. Was ist der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Terme oder Hinzufügen von MA-Terme In den vorangegangenen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Walk-Modell auf zwei verschiedene Arten festgelegt: durch Hinzufügen eines verzögerten Wertes der differenzierten Serie Zur Gleichung oder Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz ist am besten Eine Faustregel für diese Situation, die später noch ausführlicher erörtert wird, ist, dass eine positive Autokorrelation in der Regel am besten durch Hinzufügen eines AR-Termes zum Modell behandelt wird und eine negative Autokorrelation wird meist am besten durch Hinzufügen eines MA Begriff. In geschäftlichen und ökonomischen Zeitreihen entsteht oftmals eine negative Autokorrelation als Artefakt der Differenzierung. (Im Allgemeinen verringert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation verursachen.) So wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Term begleitet wird, häufiger als ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) mit konstanter, einfacher, exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell erhalten Sie gewisse Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, was in der Regel nicht durch das SES-Modell-Anpassungsverfahren erlaubt ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff im ARIMA-Modell einzubeziehen, wenn Sie es wünschen, um einen durchschnittlichen Trend ungleich Null abzuschätzen. Das ARIMA (0,1,1) - Modell mit Konstante hat die Vorhersagegleichung: Die Prognosen von einem Periodenvorhersage aus diesem Modell sind qualitativ ähnlich denen des SES-Modells, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise ein Schräge Linie (deren Steigung gleich mu ist) anstatt einer horizontalen Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei Nichtseason-Differenzen in Verbindung mit MA-Terme verwenden. Der zweite Unterschied einer Reihe Y ist nicht einfach der Unterschied zwischen Y und selbst, der um zwei Perioden verzögert ist, sondern vielmehr der erste Unterschied der ersten Differenz - i. e. Die Änderung der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Y t - Y t - 1) - (Y t - 1 - Y t - 2) Y t - 2Y t - 1 Y t - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie misst die quotaccelerationquot oder quotcurvaturequot in der Funktion zu einem gegebenen Zeitpunkt. Das ARIMA (0,2,2) - Modell ohne Konstante prognostiziert, dass die zweite Differenz der Serie gleich einer linearen Funktion der letzten beiden Prognosefehler ist: die umgeordnet werden kann: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein Sonderfall. Es verwendet exponentiell gewichtete Bewegungsdurchschnitte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Serie abzuschätzen. Die langfristigen Prognosen von diesem Modell konvergieren zu einer geraden Linie, deren Hang hängt von der durchschnittlichen Tendenz, die gegen Ende der Serie beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte Trend-lineare exponentielle Glättung. Dieses Modell wird in den beiliegenden Folien auf ARIMA-Modellen dargestellt. Es extrapoliert den lokalen Trend am Ende der Serie, aber erhebt es bei längeren Prognosehorizonten, um eine Note des Konservatismus einzuführen, eine Praxis, die empirische Unterstützung hat. Sehen Sie den Artikel auf quotWhy der Damped Trend Workquot von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, an Modellen zu bleiben, bei denen mindestens eines von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) zu passen, da dies wahrscheinlich zu Überfüllung führen wird Und quotcommon-factorquot-Themen, die ausführlicher in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen diskutiert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen sind einfach in einer Kalkulationstabelle zu implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte der ursprünglichen Zeitreihen und vergangene Werte der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulationstabelle einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in anderen Zellen auf der Kalkulationstabelle gespeichert sind.

No comments:

Post a Comment